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Abstract

This research presents a Geographic Information Systems (GIS) and spatial analysis 
approach based on the global spatial autocorrelation of road traffic injuries for identifying 
spatial patterns. A locational spatial autocorrelation was also used for identifying traffic 
injury at spatial level. Data for this research study were acquired from Canadian Institute 
for Health Information (CIHI) based on 2004 and 2011. Moran’s I statistics were used 
to examine spatial patterns of road traffic injuries in the Greater Toronto Area (GTA). An 
assessment of Getis-Ord Gi* statistic was followed as to identify hot spots and cold spots 
within the study area. The results revealed that Peel and Durham have the highest collision 
rate for other motor vehicle with motor vehicle. Geographic weighted regression (GWR) 
technique was conducted to test the relationships between the dependent variable, number 
of road traffic injury incidents and independent variables such as number of seniors, low 
education, unemployed, vulnerable groups, people smoking and drinking, urban density and 
average median income. The result of this model suggested that number of seniors and low 
education have a very strong correlation with the number of road traffic injury incidents. 
 
Keywords: Spatial Analysis, Geographic Information Systems, Injury Analytics, Traffic 
Injuries, Geographically Weighted Regression.
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1. Introduction

Road traffic accidents are the leading and the most frequent cause of death and injury 
worldwide (Morency et al., 2012). Injuries sustained in road traffic accidents are a major 
burden on healthcare system in terms of emergency treatment, chronic care, and rehabilitation 
(Ramage-Morin, 2008). In 2009, road traffic accidents accounted for about 2300 fatalities 
and 11450 serious injuries which required hospitalization (Transport Canada, 2011). 
According to World Health Organization (WHO) report in 2005, currently road traffic 
injuries are the leading cause of death and injuries, the 10th leading cause of all deaths and 
9th leading contributor to the burden of disease worldwide. It has been predicted that by 
2030, road traffic injuries will become the third largest contributor to the burden of disease 
worldwide (Chisholm et al., 2012).
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Moreover, WHO also reports that majority of road traffic injuries are among “pedestrians, 
cyclists, and motorcyclist who are the most vulnerable road users”. For instance, according to Transport 
Canada (2011), in total about 25% of all road traffic fatalities are among vulnerable road 
users, of which 13% of fatalities are among pedestrian alone. According to Schuurman and 
others (2009) pedestrian safety is often overlooked, primarily because smooth movement of 
motorized vehicle remains a priority for engineers in road design (Schuurman et al., 2009).

Consequently, one of the major contributing causes of road traffic accidents is urban 
sprawl (Ewing, Schieber & Zegeer, 2003). The reason being is because since cities have 
spread outward into rural areas (de Noronha & Vaz, 2015), residents of sprawled cities tend 
to commute by a vehicle to their job in the city. This as a result increase the use of motor 
vehicles, which ultimately leads to an increase in the road traffic accidents.

Road traffic accident, is a global occurrence, which results in increased injury and 
mortality rates (World Health Organization, 2005). Increase in the number of motorized 
vehicle over the past few decades has been accompanied by an increasing number of road 
traffic injuries (Ameratunga, Hijar & Norton, 2006). According to Ashokbhai (2014) road 
traffic injuries have become a threat to the public health in many countries as it contributes 
to “poverty by causing death, injuries, disabilities, grief and loss of productivity”. The reason being 
is because the victim may take time off from work which would result in loss of income due 
to their injuries.

In general, it is important to study road traffic injuries as it is a major problem and it 
is not well recognized in many countries. For the purpose of this study, road traffic injury 
data from 2004 and 2011 was acquired from the Canadian Institute for Health Information 
(CIHI). The purpose of this study is as follow,
•	To investigate and determine the spatial pattern of road traffic injuries throughout the 

study area. 
•	To identify areas of hotspots with high frequency of road traffic injury
•	To develop a spatial explanatory model for underlying causes of road traffic injury.
•	And lastly, to understand and determine contributing factors behind the spatial pattern 

using geographic weighted regression (GWR).

2. Introduction

2.1 Socioeconomic Factors

Road traffic accidents have been recognized as one of the major causes of disability and 
death among people every day (Scheidt et al., 1995). There have been several literatures in 
the field of road traffic injury, however majority of research studies have been focused on the 
vulnerable road users, as they consider to have the highest number of injury and mortality 
(Pratte, 1998). Studies have also focused on the factors that contribute to the increase in 
the number of road traffic injuries and mortality.

According to the study by Link and Phelan (1995) and Camilloni and others (2013), 
socioeconomic status (SES) can play a major role as a fundamental determinants of injuries 
and deaths. For instance, study by Camilloni and others (2013) suggested that people with 
lower income are more likely to get involve in a road traffic injury, primarily due to their 
lack of access to new and safer mean of transportation. Similarly, low socioeconomic status 
is highly correlated with each of the “14 major causes of injury and death in the International 
Classification of Diseases (ICD)” (Link & Phelan, 1995). Study by Cubbin, LeClere and Smith 
(2000) discovered that risks for motor vehicle related fatalities can vary by occupation. 
People with lower status job are more prone to motor vehicle related fatalities (Cubbin, 
LeClere & Smith, 2000). The high risk of motor vehicle related fatalities among people with 
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lower job status, may possibly reflect the fact that due to lower income, they are more likely 
to live in outer city-core (rural areas), which would result in greater distance commute by 
car, and thus be exposed to higher risk of road traffic injury. Similarly, it is possible that due 
to lower income, they are less likely to be able to afford newer and safer vehicle, which would 
put them at a great risk in the event of an accident.

In addition to socioeconomic factors, some studies have suggested that both urban and 
rural environment can have an impact on the road traffic injuries as well. Afukarr, Antwi and 
Ofosu-Amaah (2003) explain that majority of road traffic injuries occur on rural areas, where 
roads are deteriorated and driving rules and regulations are frequently tend to be ignored 
by drivers (Jacob & Sayer, 1983). As a result the chances of getting into an accidents are 
much higher than in urban areas. On the contrary, other studies have suggested otherwise. 
For instance, study by Al-Omari and Obaidat (2013) showed that the rates of casualties 
occurring in urban areas among vulnerable road users are relatively higher compare to 
rural areas. In fact, pedestrians constitute a higher proportion of road traffic injuries in 
urban area (Jacob & Sayer, 1983) among vulnerable road users, followed by cyclist (WHO, 
2005). Urban areas tend to have a higher risk of road traffic injuries due to several reasons. 
Concentration of vehicles and population in city center which causes congestion and heavy 
traffic, lack of attention to traffic rules by both drivers and pedestrians (jaywalking), as wells 
as lack of segregated pedestrian and bicycle facility (bike lane) on the road network (Pratte, 
1998) are the main reason of high rate of road traffic injury in urban setting.

2.2 Global and Local Spatial Analysis

Road traffic accidents causing injury have increased throughout the years (Odero, Garner 
& Zwi, 1997), as a result it has become the main motivation behind the analysis of motor 
vehicle accident pattern. Due to the importance of road traffic accidents, number of studies 
have focused their attention to road traffic accident hotspot identification (Flahaut et al., 
2003; Geurts & Wets, 2003; Manepalli, Bham & Kandada, 2011) in order to reduce and 
prevent the increase in road traffic injuries. Martin, Crandall and Pilkey (2000) explained 
that road traffic studies have focused on identifying past, present and future injury patterns 
from motor vehicle accidents, in order to help researchers establish injury prevention 
priorities. However, to address these priorities, spatial analysis could be joined with road 
traffic injury data for the analysis.

The growth in spatially references datasets, advance visualization, rapid data retrieval 
and ability to manipulate data in geographic information system (GIS) (Vaz & Khaper, 
2016), have allowed new techniques to thrive for spatial data analysis (Anselin, 1995). 
Spatial autocorrelation is one of those methods that has been widely used to evaluate the 
interconnectedness of values in a geographic area to those nearby (Jackson & Waller, 2005). 
Spatial autocorrelation is important because the outcome in one area can greatly influence 
the outcome of its neighboring areas (Anselin, 1995). According to the Tobler’s first law of 
geography, “everything is related to everything else, but near things are more related than distance 
things” (Tobler, 1970). Number of studies in the field of road traffic injury (LaScala, Gerber 
& Gruenewald, 1999; Aguero-Valverde & Jovanis, 2006) have implemented this method to 
examine the distribution of incidents in space, and conduct analysis accordingly. 

Study of hotspots which also is referred to as “black spots or high risk locations” (Geurts & 
Wets, 2003) are sites with significantly higher frequency of injuries or accidents compare 
to neighboring locations (Hakkert & Mahalel, 1978). However, to reduce the number 
of road traffic injuries, a feasible solution is to identify hotspots (Geurts & Wets, 2003; 
Montella, 2010). Some of the commonly used hotspot identification methods are local 
spatial autocorrelation, known as Getis-Ord Gi* Statistics (Ord & Getis, 1995), and Kernel 
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density estimator (Flahaut et al., 2003). Among the existing methods, Getis-Ord Gi* 
Statistics is preferred to be used for hotspot identification (Manepalli, Bham & Kandada, 
2011). Though, both Getis-Ord Gi* Statistics and Kernel density estimator have different 
conceptualization, both produce similar results under specific conditions of the selected 
parameters (Manepalli, Bham & Kandada, 2011).

Number of researchers have made the link between road traffic injury and spatial 
analysis using hot spot analysis. Erdogan (2009) conducted a study in Turkey aiming at road 
traffic accidents using global and local spatial autocorrelation analysis, to examine whether 
provinces in Turkey with high rate of road traffic accident are clustered or are located close 
to each other randomly. Additionally, Gi* Statistics and Z-score of statistics were used to 
identify hotspots that may not be visible with global spatial autocorrelation (Getis and Ord, 
1992). More recently, Truong and Somenahalli (2011) used Moran’s I statistics to examine 
spatial patterns of pedestrian-vehicle crash data. Getis-Ord Gi* Statistics was also used to 
identify the clustering of low and high values, and also to generate a pedestrian vehicle 
crash hotspot map. It is apparent that global and local spatial autocorrelation is well known 
method and is used by many researchers in different fields, especially in the field of road 
traffic accidents.

2.3 Geographic Weighted Regression (GWR)

One of the main objectives in spatial analysis is the identification of relationships that exist 
among different variables (Helbich et al., 2013). In order to analyze the relationship among 
variables, it is important to conduct regression analysis. Regression analysis is a popular 
method of analysis among researchers when it comes to estimating effects of explanatory 
variables on the dependent variable (Charlton, Fotheringham & Brunsdon, 2006). 
Moreover, regression analysis allows researchers to study and explore spatial relationships, 
to understand the influencing factors that may affect the spatial patterns, and also to 
predict outcomes based on that understanding (Moutinho & Hutcheson, 2011: 225). For 
that matter, several techniques have already been implemented. For instance, ordinary least 
square (OLS) which is one of the most basic and most commonly used techniques, is a 
generalized linear modelling technique which is used to estimate regression models at a 
global level (Moutinho & Hutcheson, 2011: 224). Geographic weighted regression (GWR), 
however, is another technique to estimate regression with spatially varying relationships at 
a local level (Brunsdon, Fotheringham & Charlton, 1996). According to Lu, Charlton and 
Fotheringham (2011), in the last few years, there have been an increasing interest in the 
local forms of spatial analysis methods that produces results locally rather than globally. As 
a result, GWR has been identified to be the most popular, reliable and accurate method for 
exploring the spatial relationships among variables (Zhang et al., 2004).

In addition, geographic weighted regression technique has been widely used in different 
research fields such as economics (Huang, Wu & Barry, 2010), ecology and environment 
(Zhang et al., 2004), urban analysis (Gao & Li, 2011) and health analysis (Nakaya, 2005; 
Vaz, Cusimano & Hernandez, 2015). According to Zhang and others (2004), one of the 
advantages of using GWR is that it significantly improves the model fitting over ordinary 
least square (OLS). Also, since GWR produces results at a local level, the result are more 
accurate and reliable compare to global regressions.

3. Study Area

The Greater Toronto Area (GTA), which is the focus for this study, is comprised of the City 
of Toronto and the four surrounding regional municipalities of Durham, Halton, Peel and 
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York, which are located along the northern shore of Lake Ontario (Figure 1). The GTA has a 
population of over six million people, of which more than half of that population live in the 
surrounding regional municipalities (GTA Alliance, 2011). The GTA is considered to be the 
fourth largest populated area in North America (GreaterToronto, 2013). Furthermore, the 
GTA is bounded by Lake Simcoe to the north, Lake Ontario to the south, Kawartha Lake to 
the east and Niagara Escarpment to the west. The region covers an area of over 7000 km2 
with the newly amalgamated City of Toronto at its urban core. This urban core includes 
the former cities of Toronto, North York, Etobicoke, Scarborough, and the District of East 
York. The GTA is the largest urban area in Canada and one of the largest in North America. 
The GTA continues to experience rapid growth with the region adding nearly 100,000 new 
residents each year. This growth is expected to continue over the coming decades with the 
GTA becoming home to nearly 9.4 million people by 2041 (MetropolisIQ, 2012).

Figure 1. Urban land use cover in the Greater Toronto Area (GTA), located in southern Ontario, 
Canada

Source: Own Elaboration

4. Methodology

4.1 Data

In terms of the data analysis, number of census variables and injury data types were aggregated 
to conduct the analysis (Figure 2). These data variables were then used to perform global 
and local spatial autocorrelation and perform geographic weighted regression along with 
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urban density data to identify factors that may contribute to the increase of road traffic 
injury in the Greater Toronto Area.

Figure 2. Construction of road traffic injury spatial analysis

Source: Own Elaboration

Road traffic injury data were acquired from The Canadian Institute for Health 
Information (CIHI). The CIHI which was founded in 1994, is an independent and non 
for profit organization created by Canada’s federal, provincial and territorial governments 
(Statistics Canada, 2011). Their goal is to coordinate, develop and improve Canadian health 
and health care system by providing and distributing health information from hospitals and 
other organizations all over the country. The CIHI also provides information that are required 
for effective healthcare management, enable sound policy and raise public awareness of the 
factors that could contribute to affect health (Statistics Canada, 2011; CIHI, 2014). The 
CIHI manages and holds about 27 different databases of health information. Some of these 
databases are on health personnel, health spending and health services such as ambulatory 
care and discharge abstract.

To extract motor vehicle injury data from a larger dataset, a tabular search of International 
Classification of Diseases (ICD) codes was conducted to search for data of interest. 
International Classification of Diseases (ICD) codes are the “standard diagnostic tool for 
epidemiology, health management and clinical purposes” (WHO, 2014). ICD codes are used 
to classify diseases and other health problems, based on their type and severity. Motor vehicle 
injury data related to traffic were extracted from the 2004 and 2011 National Ambulatory 
Care4 (NAC) dataset using set of SQL queries in Microsoft Access. After retrieving the desired 
data, they were categorized into five primary injury types, such as motor vehicle collision 
with pedestrian, motor vehicle collision with other vehicle, other motor vehicle collision 
with motor vehicle, motor vehicle collision with train and finally, other non-collision motor 
vehicle accidents (Figure 2). However, since the extracted data were not spatially defined, 
the data sets were geocoded5 using postal codes available in the dataset. The geocoded 

4 The National Ambulatory Care (NAC) contains data for all hospital-based and community-based ambulatory care on day surgery, outpatient 
clinics, and emergency departments.
5 Process of transforming non spatial data into spatial data that can be displayed as features on a map



Vaz, E., Tehranchi, S., Cusimano, M. (2017). JSOD, V(1), 37-55

43

incidents, which now contained x and y coordinates were then georeferenced6 using ArcGIS 
built-in tools to display the incident in each category on a map. 

Following that, statistical analysis CHASS (Computing in the Humanities and Social 
Sciences) from the University of Toronto was used to provide census information for the 
Greater Toronto Area. Number of socioeconomic and socio-demographic factors that affect 
road traffic injury according to previous studies were selected from the census. Variables such 
as low education, number of unemployed, average median income, mobility, and number 
of seniors are used in statistical analysis to quantify their significance to the number of 
road traffic injury incidents (Figure 2). For effective statistical analysis, all variables were 
transformed to the square root, in order to reduce skewness that existed within the data.

Last but not least, for health behavior analysis, 2010 Ontario health survey from 
Canadian Institute Health Research (CIHR) were retrieved for statistical analysis. Data such 
as number of people smoking and drinking alcohol were collected for the Greater Toronto 
Area (Figure 2). Similar to the socioeconomic and socio-demographic data, health behavior 
data were used in statistical analysis to measure their significance to the number of road 
traffic injury incidents. They were also transformed to the square root for an effective and 
accurate outcomes.

4.2 Global Spatial Autocorrelation

Spatial patterns is defined by the arrangement and distribution of features in space and 
the geographic relationship among them (Gatrell et al., 1996). Accordingly, in order to be 
able to measure the relationship among features according to their spatial arrangement, it 
is necessary to conduct spatial autocorrelation (Cliff & Ord, 1973). There are two types 
of spatial autocorrelation. Global spatial autocorrelation identifies whether the values of 
a variable show a significant pattern of regional clustering (Vaz, 2016). In contrast, local 
spatial autocorrelation identifies the location of high and low value clusters, usually known 
as hotspots and cold spots (Ord & Getis, 1995). In global measures, the relationship among 
features may be described as positive correlation if similar values are spatially close to 
each other (clustered), negative correlation if different values are located near one another 
(dispersed) and random if spatial pattern cannot be distinguished from the arrangement 
of values (Getis, 2008). In order to understand and measure such pattern, statistical tools 
such as Moran’s I (Anselin, 1995; Ord-Getis, 1995) can be used to measure the dispersal or 
clustering of the features in space. As a result, Moran’s I value can be computed as,

(1)

											         
where zi is the deviation of an attribute for feature i from its mean (xi – X), wi,j is the 

spatial weight between features i and j, and n is the total number of features (Anselin, 1995). 
S0 is the aggregate of all the spatial weights, which is calculated as, 

(2)

Moran’s I value are ranged from -1 to 1. A Moran’s I value of +1 indicates that features are 
clustered and there is a positive autocorrelation; conversely, a Moran’s I value of -1 indicates 
that features are dispersed and there is a negative spatial autocorrelation. Moran’s I value 
6 Process of aligning geographic data to a known coordinate system so it can be viewed, queried, and analyzed with other geographic data.
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of 0 indicates that features are distributed randomly and therefore, spatial autocorrelation 
would not exist (Slocum et al., 2009: 52). However, before calculating Moran’s I, a spatial 
weight matrix was defined using queen contiguity, which outlines a locations neighbor with 
either a shared border or vertex (Anselin, 1995).

Moreover, the statistical significance for Moran’s I can be calculated using z-score 
method (Erdogan, 2009). This is primarily used to see whether the outcome is the result of 
random distribution or not. Z-score greater than 1.96 or less than -1.96 indicates that there 
is a spatial autocorrelation at a 5% significant level; thus the outcome is not as a result of 
random distribution.

4.3 Local Spatial Autocorrelation

In order to evaluate the spatial variation and the spatial association, it is necessary to 
conduct local measures such as local Moran’s I (Anselin, 1995) or Getis-Ord Gi* statistics 
(Getis & Ord, 1992). This is carried out by counting the number of road traffic injury 
incidents in each dissemination area within the study area. This will allow us to determine 
whether the features contain high or low clustering value. Unlike measures of global spatial 
autocorrelation, which gives only one value indicating the degree of regional clustering across 
the whole study area, Getis-Ord Gi* statistics gives a value for each location which indicates 
the degree of high or low value clusters (Getis & Ord, 1992). Also, Getis-Ord Gi* statistics 
is used to measure the degree of association from a concentration of weighted point (Ord 
& Getis, 1995). For the purpose of this study, the local statistics were carried out by using 
queen contiguity weight matrix in relation to the number of road traffic injury incidents 
which was calculated earlier. Higher Getis-Ord Gi* statistics value indicates that spatial 
clustering among features is significant (Vaz, 2013). This value is highly correlated with 
the z-score or significance level. For instance, higher value of z-score indicates the intensity 
of clustering among higher value known as hot spot, and low z-score value indicates the 
intensity of clustering among lower values known as cold spot (Ord & Getis, 1995). The 
Getis-Ord Gi* statistics is computed as, 

(3)

where xj is the attribute value for feature j, wi,j is the spatial weight between features i and 
j and n is the total number of features (Ord & Getis, 1995).

4.4 Level of Urbanization

According to studies, one of the main contributing factors influencing road traffic injury is 
urban density. It has been found that many of the road traffic injuries occur on urban roads 
where population is higher and traffic congestion is at its peak. This could be due to the 
lack of attention on the road or the way roads have been designed (Pratte, 1998). GTA has 
seen a significant growth in urban development in the past 30 years. As a result of urban 
growth (Vaz et al., 2012; Vaz & Nijkamp, 2015), population has increased which has led 
to higher rate of road traffic injuries (Atubi, 2012). Urban density is defined as areas that 
are continuously being or have been developed with a population of 50,000 or more. These 
areas are usually considered to be developed and densely settled (Carlino, Chatterjee & 
Hunt, 2007). To evaluate the influence of urban density on road traffic injuries, a model was 
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carried out by measuring the urban size and the geographic size of each census tract. As a 
result, urban density in each census tract was computed as,

(4)

where Ui is the size of each urban area and A is the geographic size of each census tract. 
However, urban areas were developed by combining urban categories such as commercial, 
residential, industrial, parks/recreation and government/institutions. The importance of 
evaluating the urban density in this research, is to explain if the increase in urbanization has 
any influence on the road traffic injuries (Vaz et al., 2017).

4.5 Geographic Weighted Regression

According to number of studies (Camilloni et al., 2013; Pratte, 1998; Link & Phelan, 1995), 
several factors have contributed in the increase of road traffic injuries worldwide. In order 
to investigate the relationship between the number of road traffic injuries and other related 
factors such as income, education, unemployment and etc., geographic weighted regression 
(GWR) method was used. GWR is an extension of classical standard regression (OLS) with 
a difference that GWR allows local parameters to be estimated rather than global parameters 
(Gao & Li, 2011). The main reason that GWR is used in the study is because results are 
more reliable and more accurate since they are at a local level. The results in GWR is similar 
to the classical standard regression (OLS) in which R2 represents the goodness of fit. Similar 
to OLS, R2 value ranges from 0 to 1, and the higher the R2 value is, the better the model fits 
the hypothesis. Geographic weighted regression can be expressed as,

(5)

where yi is the dependent variable at location i, β0 (µi, vi) is the intercept parameter at 
location i, (µi, vi) is the coordinate of location i, βk (µi, vi) is the local regression coefficient for 
the k-th explanatory variable at location i, Xik is the value of the k-th explanatory variable at 
location i and lastly, εi are random errors at point i terms (Lu, 2011). 

In addition, in order to be able to estimate the parameters in GWR, all observations 
must be weighted. Observations closer to point i have higher impact on the local parameter 
and therefore are weighted more than data that are located further away (Gao & Li, 2011). 
As a result the parameters are computed as,

(6)

where (µ,v) represents the unbiased estimate of β, W((µ,v) is the weighting matrix 
which acts to ensure that observations near to the specific point have bigger weight value 
(Lu, Charlton & Fotheringham, 2011). The weighting functions which are also called kernel 
are being implemented using the Gaussian distance decay which is computed as 

(7)
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where Wij represents the weight of observation j for location i, h is a non-negative 
parameter known as bandwidth which produces a decay of influence with distance and dij is 
the measure of Euclidean distance between location of observation i and j and is computed 
as (Brunsdon, Fotheringham & Charlton, 1998), 

(8)

where (xi, yi) and (xj, yj) are point coordinates. As a result, if observation j coincide with 
i, the weight value is one, and if the distance is greater than the kernel bandwidth then the 
weight will be set to zero. Moreover, as Huang, Wu and Barry (2010) explain, there are two 
weighting methods that can be used in GWR, fixed and adaptive kernel. In fixed kernel, 
distance is constant, though the number of adjacent neighbors vary. In adaptive kernel, 
distance among features vary but the number of neighbors remains constant. For instance, 
in adaptive kernel if feature contain dense distribution, then the spatial context is smaller, 
and if the feature have sparse distribution then the spatial context is larger. For the purpose 
of this study, adaptive kernel was chosen for the analysis.

5. Results and Discussion

5.1 Road Traffic Injury Incidents Statistics

The result of this research study follows the three stream of analysis as defined earlier, 
defining spatial pattern of road traffic injuries, identify areas of hotspots and cold spots, 
and determine variables that contribute and influence the increase in road traffic injuries. 
Table 1 is a summary statistics comparing the number of road traffic injury incident between 
Ontario and GTA between 2004 and 2011.

Table 1. Summary statistics of road traffic injury incidents statistics

2004 2011 Change (%)

Ontario GTA Ontario GTA Ontario GTA

Motor vehicle collision with pedestrian 3916 1837 4132 1892 6 3

Motor vehicle collision with other vehicle 137 53 139 61 1 15

Motor vehicle collision with train 196 24 76 14 -61 -42

Other motor vehicle collision with motor vehicle 3522 1621 4488 2224 27 37

Other non-collision vehicle accidents 102 25 61 16 -40 -36

TOTAL 7873 3563 8896 4207 13 18

Source: Own Elaboration

As Table 1 shows, there has been an 18% increase in the total number of road traffic 
injuries just within GTA between 2004 and 2011. The table also illustrates that nearly 50% 
of all traffic injury incidents in Ontario occur within Greater Toronto Area (GTA), and 
therefore this establishes a huge threat to the public. The change and increase in the number 
of road traffic injury incidents between 2004 and 2011 can clearly be seen in Figures 3 and 
4 below.
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Figure 3. Number of road traffic injury incidents in the Greater Toronto Area (GTA) 2004

Source: Own Elaboration

Figure 4. Number of road traffic injury incidents in the Greater Toronto Area (GTA) 2011

Source: Own Elaboration
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This significant growth in the total number of road traffic injury in the GTA from 2004 
to 2011 is primarily due to the population increase that had occurred in the GTA. However 
after normalizing the data by total population, it was observed that there was about 17% 
increase in the terms of the total number of road traffic injuries in both Ontario and the 
GTA between 2004 and 2011. Moreover, increase in the use of motor vehicle and vehicle 
dependability as a result of urban sprawl can be one of the factors of this significant change 
in the total number of road traffic injury in the GTA.

5.2 Global Pattern of Road Traffic Injury in the Greater Toronto Area

The Moran’s I analysis indicates a statistically significant clustering pattern of vehicle 
collision with pedestrian, and other motor vehicle collision with motor vehicle in the Greater 
Toronto Area (Table 2). With z-scores above 1.96, we know that there is a positive spatial 
autocorrelation with 95 percent confidence, and therefore the outcomes are not as a result 
of random distribution.

Table 2. Summary table of global spatial autocorrelation

2011

Moran’s I Z-score Pattern

Motor vehicle collision with pedestrian 0.24 10.88 Cluster

Motor vehicle collision with other vehicle 0.08 0.66 Random

Motor vehicle collision with train 0.69 1.78 Cluster

Other motor vehicle collision with motor vehicle 0.20 10.45 Cluster

Other non-collision vehicle accidents -0.15 -0.20 Random

Source: Own Elaboration

One of the reasons that could explain the clustering pattern of pedestrian collision with 
a motor vehicle is population density. According to the study by Clark (2003), there is a 
positive relationship when it comes to traffic fatalities and population density. As for the 
GTA, majority of Ontario’s population is concentrated in the GTA which increases the 
risk of traffic injury and fatalities among people. In addition, pedestrian safety is often 
overlooked in the main cities, because smooth movements of motor vehicles has become a 
priority of engineers in road design (Schuurman et al., 2009).

5.3 Greater Toronto Area Hotspots

Local approaches were also used for analyzing spatial association to identify locations with 
highest number of incidents compare to other locations which is also known as hot spots. 
The results revealed that majority of motor vehicle collisions with pedestrian occur in urban 
areas of GTA where population density is higher. In contrast, motor vehicle collision with 
other vehicle hotspots are mostly concentrated on the southern part of GTA, with majority 
of hotspots in the Toronto region. On the contrary, Peel region and western part of Durham 
region have seen a significant existence of hotspots when it comes to other motor vehicle 
collision with motor vehicle. The result indicates that these two regions have the highest rate 
of injury as a result of vehicle collision compare to other regions in the study area. Compare 
to other three collision types, motor vehicle collision with train had the lowest number of 
road traffic injury incidents. However, according to the hotspot analysis results, majority of 
this types of incidents happen on the northern part of Toronto region where there is a rail 



Vaz, E., Tehranchi, S., Cusimano, M. (2017). JSOD, V(1), 37-55

49

track that pass by. In addition to all these, other non-collision vehicle accidents hotspots 
have occurred on the outskirt of the city where areas are rural and population is lower.

5.4 Contributing Factors to Road Traffic Injury in the Greater Toronto Area

Though the road traffic injury contributing factors do not affect the identification of 
hotspots, some of the key factors can be considered. For this research, eight geographic 
weighted regression models have been developed based on their category (Table 3). For 
socio-demographic factors, variables such as age, mobility and employment status were 
selected. For socioeconomic factors, variables such as income and education were selected, 
and for health behavior factors, variables such as number of smokers and alcohol drinkers 
were selected for the analysis. In addition, the urban size in each census tract was also 
included in the analysis to see whether level of urbanization has any effect on the number 
of road traffic injuries. The strength of each model is evaluated by considering the R2 value 
which is created after the model is executed.

Table 3. Summary statistics of geographic weighted regression

Variables R2 Interpretation

So
ci

o-
D

em
og

ra
ph

ic

Seniors 0.93 Very strong

Vulnerable Groups 0.60 Moderately strong

Unemployed 0.67 Moderately strong

So
ci

o-
Ec

on
om

ic

Average Median Income 0.58 Moderate

Low Education 0.80 Very strong

H
ea

lt
h 

B
eh

av
io

r

Smoke 0.53 Moderate

Drink 0.57 Moderate

La
nd

 
us

e 
co

ve
r

Urban 0.61 Moderately strong

Source: Own Elaboration

Based on the results presented in Table 3, both seniors and low education have a very 
strong correlation with the dependent variable, number of road traffic injury incidents. This 
result suggest that areas with higher number of seniors and higher number of population 
with lower education leads to higher number of road traffic injury incidents. Following 
that, number of unemployed, urban land use (Vaz & Arsanjani, 2015) cover and vulnerable 
groups explained 67, 61 and 60 percent of the model respectively. Surprisingly, according to 
these results, health behavior factors such as smoking and drinking does not have a strong 
correlation with number of road traffic injuries, which conveys that there should be other 
health behavior factors that should correlate with the number of road traffic injuries.

With seniors and low education being identified as main factors that contribute to the 
increase of road traffic injuries, some policies should be implemented in order to alleviate 
road traffic injury accidents in major cities with high population density such as Greater 
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Toronto Area. As an example, in London UK a congestion pricing project was implemented 
in the highest vehicular congested area which would force people to pay a fee in order to 
be able to drive in those congested areas (Mackie, 2005). This has reduced congestion 
significantly, allowing people to walk, shop and live in a more pleasant and safer environment. 
Moreover, according to the study by Mackie (2005), this policy has also reduced personal 
injury accidents in central London by 5%.

6. Conclusion

6.1 Findings

This research presented an approach based on the global spatial autocorrelation of road traffic 
injury for identifying the spatial pattern, and local spatial autocorrelation for identifying 
traffic injury hotspots. Global spatial autocorrelation allowed us to examine the pattern of 
injury incidents and determine whether they are clustered or dispersed in the study area. 
This was measured by using Moran’s I value. On the other hand, local spatial autocorrelation 
or Getis-Ord Gi* statistics, was used to identify hot spots in the study area. The hot spots 
were measured by using z-score value. Identification of hot spots are important because 
the results reveal areas where governments should pay more attention when it comes to 
road injury preventions. In addition to these two methods, geographic weighted regression 
(GWR) was also used in determining factors that would influence the increase in road traffic 
injury. One of the benefits of using GWR was that it allowed locational information to be 
included in the analysis, and thus the results became more accurate and reliable.

6.2 Limitations

Furthermore, different geographic units were used in the analysis. For instance, in both 
global and local spatial autocorrelation, dissemination areas (DA) were used, primarily due 
to the accuracy and reliability of the results in smaller areas. In contrast, census tracts (CT) 
geographic units were used for statistical analysis, because since DA geographic units are 
small in size, they tend to create more variance and as a result skew the results in regression 
analysis. Therefore, a larger geographic unit such as CT was applied in the statistical analysis 
to avoid skewness in the result. However, using CT geographic unit had its own limitation. 
As an example, the north western municipalities of Durham region (Scugog and Brock) 
which are considered as secluded and rural area, were excluded from the analysis, due to 
the lack of CT geographic units, and thus they were not included in the regression analysis. 
In addition to this, there were some issues within the census data as well. For example, 17 
instances of null data or no data values were present within the GTA census tracts, and as a 
result they were also not included in the regression analysis.

6.3 Future Research

Identification of road traffic injury hotspots and determining influencing factors in road 
traffic injury can definitely be beneficial in injury prevention measures. The findings of this 
research supports those of other studies which associate low education and urban density 
with road traffic injury. In addition, number of seniors was also found to be a factors in road 
traffic injury. Consequently, these results provide a foundation for extending road traffic 
injury research. Future studies should definitely analyze and study the road design and 
visibility in urban areas. Road design is widely acknowledged in several studies. For instance 
studies have found that motor vehicle speed and fatality frequencies are higher on wider 
major arteries, and as a result there are more crashes and injuries at main intersections. Also, 
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study by Morency (2012) examined how road design can increase the rate of pedestrian and 
cyclist injuries within an urban areas. The results of this study suggested that arterial roads 
with increased turning range and free-flow right turn lanes may threaten pedestrian and 
cyclist. Therefore, to better orient street level environment and prevent such incidents to 
occur, further studies should include more detailed measures of street design and visibility. 
Furthermore, since health behaviors factors such as smoking and drinking demonstrated 
a moderate relationship with road traffic injury incidents, future studies should examine 
physical factor such as time and the distance travelled in relation to road traffic injury 
incidents. Some studies have found that distance travelled can pose a great risk to 
pedestrian and other drivers (Chapman, 1973; Lassarre et al., 2007). Study by Lassarre 
and others, examined the relationship between road accidents and distance travelled. The 
results explained that drivers that travel a greater distance, are more likely to driver at a 
higher speed and be prone to exhaustion and thus threaten the safety of other motorists and 
pedestrians. Study by Chapman (1973) also found that driving time can also be an exposure 
to road traffic injury. For instance, driving between day and night can greatly impact the risk 
of road injuries. Drivers with poor visions are more prone to get in an accident since they 
would not be able to see and distinguish the objects clearly at night time. Having said this, 
to prevent and alleviate the rate of road traffic injury, further studies should include more 
detailed examination and analysis on time and distance travelled.
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